Marta Gomes da Silva

martags@ital.sp.gov.br

Principais carotenóides: bixina e norbixina

Isômero trans

Bixina – R= COOCH₃

Norbixina – R=COOH

Sal de norbixina

Técnicas de análise

- Cromatografia em camada delgada
- Cromatografia em coluna aberta
- CLAE
- Ressonância magnética nuclear
- Espectroscopia de massa

Método espectrofotométrico:

- Extração solventes orgânicos como clorofórmio ou acetona ou hexano ou metanol, a frio ou a quente
- Alcalino hidróxido de sódio ou potássio, com temperatura

Alcalino - Sementes de urucum podem estar inteiras ou moídas

Carvalho et al., 1992

- fator para converter norbixina em bixina é 1,037
- fator para converter sal de norbixina em bixina é 1,016 KOH e 1,076 – NaOH
- Coeficiente de absorção utilizado para o cálculo
- λ453nm, KOH ou NaOH, Coeficiente de absorção de2850±40
- λ470nm, CHCl3, Coeficiente de absorção de 3230±80

Yabiku & Takahashi, 1992 – estudo colaborativo Sementes trituradas – extração com clorofórmio Sementes inteiras – extração alcalina

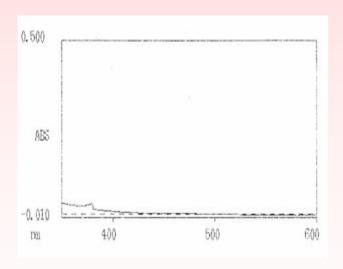
Testes

Solvente	Massa (g)	Forma de extração	Volume (mL)	Bixina (g/100g)	
CHCl ₃	2,0g	Extração exaustiva com agitação 30, 10mL	250	2,60±0,23	
Acetona	2,0g	Extração exaustiva com agitação 30, 10mL	250	3,53±0,04	
NaOH 5%	2,0g	NaOH – ebulição por 1 minuto	250	4,66±0,16	
Solução sabão*	2,0g	Solução saponificação + KOH – ebulição por 1 minuto	250	5,43±0,08	

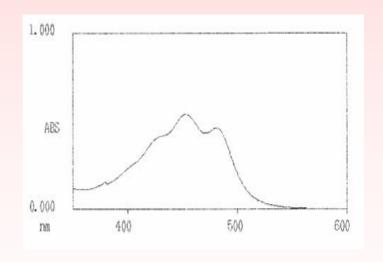
^{*} Solução de saponificação foi preparada com óleo de mamona, KOH 45% e água

Método proposto e validado para análise em sementes inteiras

- Tomada amostra 10g
- Volume solução saponificação trabalho solução saponificação*: KOH45%:H₂O (0,4:1,1:8,5) (v/v) – 60mL
- Ebulição 1 minuto
- Massa inicial ajustada para 250g
- Agitação por 10 minutos
- •Diluição 1:100-0,5:5mL com KOH 0,5%
- Leitura: λ 453nm, $E_{1cm}^{1\%}$ 2850, fator para converte sal de norbixina para bixina de 1,16
- * Solução saponificação: óleo de mamona: KOH 45%:H₂O (5:1,7:3,3) (v/v)



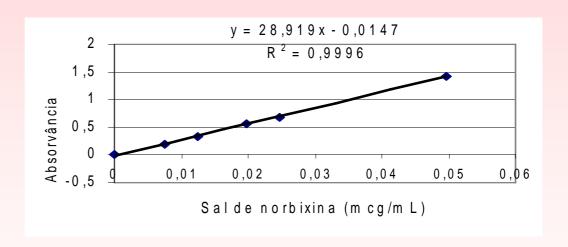
Validação – critérios


- Especificidade Linearidade
- Precisão Robustez

- Sensibilidade

Especificidade: varredura entre 350 e 600nm do branco dos reagentes

Solução de hidróxido de potássio 0,5%


Varredura de uma amostra

Linearidade: construção de uma curva com as seguintes concentrações: 0,0074; 0,0124; 0,0198; 0,0248 e 0,0496µg/mL.

$$t_r = \frac{|r|\sqrt{(n-2)}}{\sqrt{(1-r^2)}}$$

O *t* obtido foi 99,995 e o tabelado $t_{95.4}$ é 2,776.

Sensibilidade: construção de uma curva com concentrações inferiores ao menor ponto da curva de analítica, com três leituras consecutivas de cada ponto.

$$\frac{Y_{BL} + 3S_{BL}}{B} \frac{1}{\sqrt{N}} \text{ Limite de quantificação} = \frac{Y_{BL} + 10S_{BL}}{B} \frac{1}{\sqrt{N}}$$

$$\frac{Y_{BL} + 10S_{BL}}{B} \frac{1}{\sqrt{N}}$$

Curva analítica: y = -0.0147 + 28.919x

Curva concentração/absorbância: y= - 0,0063 + 28,619x

Curva concentração/s: y= - 2E-17 + 7E-15x

$$Y_{bl} = 0.0063$$
 $S_{bl} = 2.00E-17$ $B = 28.919$

Limite de detecção: 0,31mg de sal de norbixina /100g de sementes de urucum

Limite de quantificação: 0,63mg de sal de norbixina /100g de sementes de urucum

Precisão do sistema: 10 leituras consecutivas de uma amostra e o coeficiente de variação entre as leituras foi comparado com o valor encontrado no teste de repetitividade.

Precisão do método: 7 repetições analíticas em paralelo em uma amostra, e o valor de coeficiente de variação (CV%) encontrado foi avaliado pela equação de Horwitz (CV Max).

$$CV \max(\%) = 2^{(1-0,5\log C)}$$

Precisão do sistema				
Ensaio	Absorbância			
1	0,482			
2	0,482			
3	0,482			
4	0,481			
5	0,482			
6	0,481			
7	0,481			
8	0,481			
9	0,481			
10	0,481			
Média	0,481			
S	0,00049			
CV (%)	0,10			
CV Max (%)	4			

Robustez

	Parâmetros	Nominal (-)	Variação (+)	
A/a	λ	453nm	482nm	
B/b	Peso amostra	10g	25g	
C/c	Peso amostra	5g	10g	
D/d	Volume/massa	Volume (mL)	Massa (g)	
E/e	Tempo agitação	5 minutos	10 minutos	
F/f	Tempo ebulição	1 minuto	2 minutos	
G/g	Peso amostra	2,5g	10g	

Robustez

Cálculo: matriz segundo Quattrocch, et al., 1992

| Resultado obtido| > s

 $\sqrt{2}$ 0,16

A/a 4,87 4,87 4,87 4,87 4,20 4,20 4,20 4,20 0,50 B/b 5,46 5,46 5,67 5,67 5,46 5,46 5,67 5,67 -0,21 C/c 5,46 5,22 5,46 5,22 5,46 5,22 5,46 5,22 0,24 D/d 5,46 5,46 5,14 5,14 5,14 5,14 5,46 5,46 0,32 E/e 5,46 5,75 5,46 5,55 5,46 5,54 5,46 -0,16 F/f 5,46 5,54 5,54 5,46 5,46 5,54 5,46 -0,08 G/g 5,46 5,16 5,46 5,16 5,46 5,46 5,46 5,16 0,30	Parâ- metro	1	2	3	4	5	6	7	8	Resul- tado
C/c 5,46 5,22 5,46 5,22 5,46 5,22 5,46 5,22 0,24 D/d 5,46 5,46 5,14 5,14 5,14 5,14 5,46 5,46 0,32 E/e 5,46 5,75 5,46 5,75 5,46 5,21 5,46 -0,16 F/f 5,46 5,54 5,54 5,46 5,54 5,54 -0,08	A/a	4,87	4,87	4,87	4,87	4,20	4,20	4,20	4,20	0,50
D/d 5,46 5,46 5,14 5,14 5,14 5,14 5,14 5,46 5,46 0,32 E/e 5,46 5,75 5,46 5,75 5,75 5,46 5,21 5,46 -0,16 F/f 5,46 5,54 5,54 5,46 5,54 5,54 5,46 -0,08	B/b	5,46	5,46	5,67	5,67	5,46	5,46	5,67	5,67	-0,21
E/e 5,46 5,75 5,46 5,75 5,46 5,46 -0,16 F/f 5,46 5,54 5,54 5,46 5,46 5,54 5,46 -0,08	C/c	5,46	5,22	5,46	5,22	5,46	5,22	5,46	5,22	0,24
F/f 5,46 5,54 5,54 5,46 5,46 5,54 5,54 5,46 -0,08	D/d	5,46	5,46	5,14	5,14	5,14	5,14	5,46	5,46	0,32
	E/e	5,46	5,75	5,46	5,75	5,75	5,46	5,21	5,46	-0,16
G/g 5,46 5,16 5,46 5,46 5,46 5,46 5,46 0,30	F/f	5,46	5,54	5,54	5,46	5,46	5,54	5,54	5,46	-0,08
	G/g	5,46	5,16	5,16	5,46	5,16	5,46	5,46	5,16	0,30

Robustez

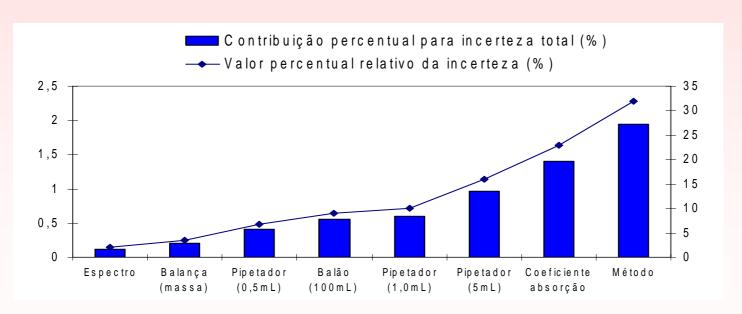
Foi incorporado ao método analítico

- tomada de amostra 10g
- tempo de agitação de 10 minutos
- volume inicial de 250mL substituído por massa (g)
- leitura λ453nm

Incerteza

Cálculo de incerteza expandida do resultado analítico:

- incertezas da massa
- incertezas da vidraria volumétrica
- incertezas dos pipetadores
- incerteza do espectrofotômetro
- incerteza do coeficiente de absorção
- precisão do método



Incerteza

Nas condições da validação:

carotenóides totais expressos como bixina por 100g de sementes – 5,46g±0,30g (K=2)

•Carotenóides totais expressos como sal de norbixina por 100g de sementes − 4,71g±0,26g (K=2)

Agradecimentos

As empresas que participaram do estudo disponibilizando seus métodos analíticos para avaliação.

Obrigado

